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MOTIVATION
In 2004, Grinfeld and Strang [4] posed the following boundary problem.

What is the series in 1/N for the simple Laplace eigenvalues λN on a regular
polygon with N sides under the Dirichlet boundary condition? The first four
terms in the series were computed by hand in [5].

The function u(r, theta) is defined using Bessel Functions Ji and the ith
root of the zeroth Bessel Function ρ.

u(r, θ) =
J0(ρr)√
πJ1(ρ)

(1)

The Laplacian eigenvalue is

∇i∇iu = λu (2)

On the unit circle, under the Dirichlet boundary condition u|S = 0,
λcircle = ρ2. To find λN , we deform the circle into a polygon with N sides
and generate a Taylor Series. Solving for the fourth term required significant
simplifications and the fifth term was intractable. This motivated the desire for
a symbolic computation system that could handle this and similar problems.

MODEL PROBLEMS
To build a symbolic system, we selected model problems. A boundary

variation of Poisson’s equation was used to justify automation was possible.[1]
We then examined a variation on the polygon problem, deforming the circle
into an ellipse with semi-axes A = 1 and B = 1 + t?

CALCULUS OF MOVING SURFACES
The Calculus of Moving Surfaces (CMS) is an extension of Tensor Calcu-

lus to deforming manifolds. The CMS provides a mechanism for solving our
problem by modeling the deformation of a circle into an ellipse. We can apply
δ
δt , the central operator of the CMS, to calculate each term in the series.

We automate the CMS using a Term Rewrite System (TRS) implementing
equational properties as directional rules. The implementation of our TRS is
described in [3]. After reduction by the TRS, expressions are evaluated by
generating Maple code.

Some expressions are challenging to evaluate directly. The δ
δt -derivative of

mean curvatureBαα can be replaced with an expression that is easier to evaluate
∇α∇αC+CBαβB

β
α. The δ

δt -derivative of u(r, θ) cannot be evaluated directly,
replacing it with partial derivatives that we can calculate is crucial.

δu

δt
→ ∂u

∂t
+ CNi∇iu (3)

VARIATIONS
Each term in λellipse has the format

∫
LndS. The first variation λ1 is

defined by Hadamard’s formula.

λ1 = −
∫
S

C∇iu∇iudS. (4)

The CMS can be used to find the next term in the series.

λ2 =
δ

δt

(
−
∫
S

C∇iu∇iudS
)

(5)

The CMS provides a recursive formula for these expressions.

λn =

∫
LndS, Ln =

δLn−1
δt

− CBααLn−1 (6)

Using this formula, we derive L2

L2 = −δC∇iu∇
iu

δt
+ CBααC∇iu∇iu (7)

L2 is reduced to its normal form by our TRS. Rules are applied to ensure
an expression where evaluation is possible. Some key rules are shown.

Applied Product Rule:

− δC∇
iu∇iu
δt → − δCδt ∇

iu∇iu− C δ∇iu
δt ∇iu− C∇

iu δ∇iu
δt

(8)

Applied Chain Rule:

δ∇iu
δt → ∇i ∂u∂t + CNm∇m∇iu (9)

The final normal form for L2 is

L2 = C2Bαα∇iu∇iu− δC
δτ ∇

iu∇iu− 2C∇i ∂u∂t∇iu
−2C2Nm∇iu∇i∇mu

Using the recursive nature of the expression, further values can be calcu-
lated by the TRS.

L3 = −C3BββB
α
α∇iu∇iu+ C δC

δt B
α
α∇iu∇iu

+3C2Bαα∇i ∂u∂t∇iu+ 2C3BααN
j∇iu∇i∇ju

+2CBαα
δC
δt ∇

iu∇iu+ C2∇iu∇iu∇α∇αC
+C3BαβB

β
α∇iu∇iu+ 2C3BααN

j∇iu∇i∇ju
+C2Bαα∇i ∂u∂t∇

iu− δ2C
δ2t ∇

iu∇iu− δC
δt ∇

i ∂u
∂t∇iu

−2C δC
δt N

j∇iu∇i∇ju− δC
δt ∇i

∂u
∂t∇

iu− 2 δCδt ∇
i ∂u
∂t∇iu

−2C∇i ∂
2u
∂2t∇iu− 2C2N j∇iu∇i∇j ∂u∂t − 2C∇i ∂u∂t∇

i ∂u
∂t

−4C2N j∇i ∂u∂t∇j∇iu− 4C δC
δt N

j∇iu∇i∇ju
+2C2Zjα∇iu∇i∇ju∇αC − 2C3N jNk∇i∇ju∇k∇iu
−2C2N j∇i∇j ∂u∂t∇iu− 2C3N jNk∇iu∇i∇k∇ju

(10)

The number of products in the summation after combining like terms are
L1 = 1, L2 = 4, L3 = 23, L4 = 137, and L5 = 1154. This rapid increase in
the number of terms is a consistent feature of high order perturbation problems.
It causes calculations to quickly becomes intractable.

To determine the series terms, these expressions are exported to Maple and
evaluated on the surface.

SOLUTIONS
We present the first five variations. They are provided in terms of λ on

the circle. We also provide the numeric approximation for each variation. The
solutions have been confirmed to match numerical estimates.

λ = λ = 5.783
λ1 = −λ = −5.783
λ2 = 3

2λ+ 1
4λ

2 = 17.036
λ3 = −3λ− 3

2λ
2 = −67.517

λ4 = 15
2 λ+ 15

2 λ
2 + 87

128λ
3 − 21

256λ
4 = 333.919

λ5 = − 45
2 λ−

75
2 λ

2 − 1305
128 λ

3 + 315
256λ

4 = −1979.913

We give the first five terms in the series for the ellipse, in eccentricity ε

λ (ε) = λ+− 1
2 λ ε

2 +
(
− 3

16 λ+ 1
32 λ

2
)
ε4 +

(
− 3

32 λ+ 1
64 λ

2
)
ε6

+
(
− 7

128 λ+ 3
512 λ

2 + 29
16384 λ

3 − 7
32768 λ

4
)
ε8

+
(
− 9

256 λ+ 1
1024 λ

2 + 87
32768 λ

3 − 21
65536 λ

4
)
ε10

(11)

The first seven terms and details of calculation will be presented in [2].
In the CMS, an expression is true for all coordinate systems. This means

that our expressions are also valid for the N -sided polygon problem. The val-
ues of C and ∂u

∂t are infinite Fourier series in the N -sided polygon problem.

CONCLUSIONS
We have automated the computation of CMS problems that had previously

been solved by hand. We have extended the results on these problems past
the point at which they had previously become intractable. We have shown
that the CMS has potential for automation using a TRS. We have proven that
our system produces accurate results by using it on problems that can also be
solved by numerical approximation.

We will now apply our system to theN -sided polygon problem, which mo-
tivated its development. Due to the nature of the CMS, our derived expressions
are true for any coordinate system. We must now solve the problem of evalu-
ating these expressions on the N -sided polygon. The remaining hurdle of this
problem is the complexity of evaluation on the N -sided polygon.
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