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MOTIVATION
In 2004, Grinfeld and Strang [3] posed the following boundary problem.

What is the series in 1/N for the simple Laplace eigenvalues λN on a regular
polygon with N sides under the Dirichlet boundary condition? The first four
terms in the series were computed by hand in 2012 [4]. Our goal is to automate
the process and derive more terms in the series.

The Calculus of Moving Surfaces (CMS), an extension of tensor calculus
to deforming manifold, provides an analytic method to describe the change
caused by the deformation of a surface. The Laplace eigenvalues on the unit
circle under the Dirichlet boundary condition are known. We have applied the
CMS to analyze the change in the eigenvalues between the unit circle and N -
sided regular polygon[2]. It remains to evaluate these expressions and form a
Taylor series for the eigenvalues on the N -sided polygon.

This problem is interesting in applied mathematics[5], physics[1] and pat-
tern recognition[6]. It also presents a number of analytical challenges associ-
ated with the singularities present in the problem. This problem has important
implications for the analysis of numerical methods in which a smooth bound-
ary is replaced by an approximated shape.

SURFACE DEFORMATION
The Laplace-Dirichlet Eigenvalue problem is described by the following

set of equations for a boundary S embedded in space Ω.

4u = −λu (1)
u|S = 0 (2)∫

Ω

u2dΩ = 1 (3)

The unknowns, u and λ, can be found when S is the unit circle and Ω is de-
scribed in polar coordinates.

u(r, θ) =
J0(ρr)√
πJ1(ρ)

(4)

λ = ρ2 (5)

In this expression, Jm is the m-th Bessel Function and ρ is the n-th root of J0.
The surface will start at t = 0 with the unit circle and deform into an N -sided
regular polygon at time t = 1. The area will be constant for the deformation.

We will use a Taylor series to describe λ(t = 1) in terms of the i-th deriva-
tives of λi(t = 0) = λi.

λ(t = 1) = λ+ λ1 +
1

2!
λ2 +

1

3!
λ3 +

1

4!
λ4 + · · · (6)

EVALUATION
The CMS provides expressions for the derivatives of λ but evaluation is

dependent on the surface.

λ1 = −
∫
S

C∇iu∇iudS. (7)

λ2 =

∫
S

(C2Bαα∇iu∇iu−
δC

δτ
∇iu∇iu− 2C∇i ∂u

∂t
∇iu

− 2C2Nm∇iu∇i∇mu)dS (8)

The surface deformation is encapsulated in the surface velocity, C, and the
partial derivatives of u, ∂u∂t . The terms only need to be evaluated at t = 0.

C|t=0 =
− cos(θ) + cos(π/N)

cos(θ)
(9)

To work with this expression we represent it as a Fourier series,∑∞
k=∞ c0(k)eikNθ where

c0(k) =

{
− π2

3N2 k = 0
(−1)k

N2k2 + (−1)kπ2

3N4k4 −
5(−1)k

N4k4 + · · · otherwise
(10)

Next, we evaluate λ1 in terms of the Fourier coefficients.

λ1 = −2c0(0)ρ2 =
2π2ρ2

3N2
(11)

For λ2, the result includes convolutions of coefficients.

λ2 = 2conv(c0, c0)(0)ρ2 − 2c1(0)ρ2 + 4
√
πconv

(
c0,

δu1

δr
|r=1

)
(0) (12)

Where u1(k), is the k-th coefficient of the Fourier series for ∂u
∂t . The ex-

pressions for ui are derived from the CMS and will also include convolutions
of the ci coefficients.

u1(k) =

{
c0(0)(ρrJ1(ρr)−J0(ρr))√

πJ1(ρ)
k = 0

c0(k)ρJkN (ρr)
JkN (ρ)

√
π

otherwise
(13)

By approximating these convolutions, we can determine the solution to λ2.

λ2 =
8ζ(3)ρ2

N3
+

32π4ρ2

45N4
+O(N−5) (14)

CONVOLUTIONS
Convolutions are approximated using a custom Maple library.

conv(a, b)(i) =
m∑

k=−m

a(k)b(i− k) (15)

Deeper convolutions require more terms approximate.

conv(c, conv(a, b))(i) =

m∑
j=−m

c(j)

(
m∑

k=−m

a(k)b((i− j)− k)

)
(16)

RESULTS
Evaluating more terms increases accuracy but also the time and number of

terms that need to be simplified.

We believe that all values will converge to integer multiple of the ζ function
in the form iζ(j)ρk

Nj for integers i,j, and k.

Our current Taylor series up to 1
N5 is

λ(t = 1) = ρ2 + 2/3
π2ρ2

N2
+ 4

ζ (3) ρ2

N3
+

14

45

π4ρ2

N4

+
1

22680

ρ2
(
−45360 ζ (5) ρ2 + 453600 ζ (5)

)
N5

(17)

CHALLENGES
Although the results are simple, the expression swells rapidly during evalu-

ation. The highest we can currently determine λ4 is with convolutions of range
m = −32 · · · 32. For this sum, we need to evaluate 22,494 terms which took
over an hour. Our goal is to optimize the calculations using methods such as
parallel processing to solve λ4 for range m = −256 · · · 256 in minutes.
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