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OVERVIEW
The Calculus of Moving Surfaces (CMS) is an analytic framework that

extends the Tensor Calculus to deforming manifolds. This includes prob-
lems in boundary variation, fluid films, and shape optimization. No sym-
bolic packages exist to manipulate expressions in the CMS. The analytic
framework of the CMS is coordinate free. Expressions in the CMS can be
evaluated in any defined coordinate system. We have developed two pack-
ages to solve problems in the CMS. A Term Rewrite System (TRS) focuses
on the high level analytic framework and our Maple package handles direct
calculations in specific coordinate systems.

Our initial focus is on boundary variation problems. We have used our
two systems to determine Laplace-Dirichlet Eigenvalues. This is a problem
of current interest to researchers studying the CMS.

LAPLACE-DIRICHLET EIGENVALUES
The Laplace-Dirichlet Eigenvalue problem is defined by the system of

equations
∇i∇i(u) = −λu, u|S = 0 (1)

∇i is the covariant derivative and ∇i is the contravariant derivative. The
field u is defined over the entire problem space and u|S is the part of the field
that exists on the surface manifold.

The deforming manifold in this problem is a ellipse with semi-axis A =
1 + c and B = 1. The surface begins as a circle at time t = 0. The circle
deforms into an ellipse.

The initial values for u and λ are given by

u(r, θ) = J0(ρr)√
πJ1(ρ)

λ = ρ2
(2)

Jm is them-th Bessel function and ρ is the n-th root of J0. The variables
r and θ describe a point in 2 dimensional space using polar coordinates.

The goal of the problem is to find the variations of λ. We define λn to be
the nth variation of λ. These terms provide a partial series for the eccentricity
ε for the lowest eigenvalue λ(ε).

TERM REWRITE SYSTEM
A TRS transforms an expression based on a set of reduction rules. The

goal of the TRS is to convert an given expression into a normal form. For
this problem, the normal form can be directly calculated.

δF

δt
→ ∂F

∂t
+ CNi∇iF (3)

This rule is true for any spacial field F . In this problem, the value δu
δt

cannot be calculated directly. Application of this rule to u in provides a
calculable expression.

VARIATIONS
Each Lambda has the format

∫
LndS. The first variation λ1 is defined

by the problem.

λ1 = −
∫
S

C∇iu∇iudS. (4)

All future λ expressions can be derived from the recursive formula.

Ln =
δLn−1
δτ

− CBααLn−1 (5)

λn =

∫
LndS (6)

Using this formula, we derive L2

L2 = −δC∇iu∇
iu

δτ
+ CBααC∇iu∇iu (7)

L2 is reduced to its normal form by our TRS. Some key rule applications
are shown.

Applied Product Rule:

− δ(1)C∇
iu∇iu

δt → − δ1δtC∇
iu∇iu− δC

δt ∇
iu∇iu

−C δ∇iu
δt ∇iu− C∇

iu δ∇iu
δt

(8)

Applied Chain Rule:

δ∇iu
δt → ∇i ∂u∂t + CNm∇m∇iu (9)

The final normal form for L2 is

L2 = C2Bαα∇iu∇iu− δC
δτ ∇

iu∇iu− 2C∇i ∂u∂t∇iu
−2C2Nm∇iu∇i∇mu

(10)

Using the recursive nature of the expression, further values can be calcu-
lated by the TRS.

L3 = −C3BββB
α
α∇iu∇iu+ C δC

δt B
α
α∇iu∇iu

+3C2Bαα∇i ∂u∂t∇iu+ 2C3BααN
j∇iu∇iju

+2CBαα
δC
δt ∇

iu∇iu+ C2∇iu∇iu∇ααC
+C3BαβB

β
α∇iu∇iu+ 2C3BααN

j∇iu∇iju
+C2Bαα∇i ∂u∂t∇

iu− δ2C
δ2t ∇

iu∇iu− δC
δt ∇

i ∂u
∂t∇iu

−2C δC
δt N

j∇iu∇iju− δC
δt ∇i

∂u
∂t∇

iu− 2 δCδt ∇
i ∂u
∂t∇iu

−2C∇i ∂
2u
∂2t∇iu− 2C2N j∇iu∇ij ∂u∂t − 2C∇i ∂u∂t∇

i ∂u
∂t

−4C2N j∇i ∂u∂t∇jiu− 4C δC
δt N

j∇iu∇iju
+2C2Zjα∇iu∇iju∇αC − 2C3N jNk∇iju∇kiu
−2C2N j∇ij ∂u∂t∇iu− 2C3N jNk∇iu∇ikju

(11)

Number of products in the summation for each Ln is L1 = 1, L2 = 4,
L3 = 23, L4 = 137, and L5 = 1154.

SOLUTIONS
We have determined the first five variations exactly. They are provided

in terms of the initial λ. The variations are evaluated at t = 0. We also
provide the numeric approximation for each variation. The solutions have
been confirmed to match numerical estimates for up to 29 digits of accuracy.

λ = λ = 5.783
λ1 = −λ = −5.783
λ2 = 3

2λ+ 1
4λ

2 = 17.036
λ3 = −3λ− 3

2λ
2 = −67.517

λ4 = 15
2 λ+ 15

2 λ
2 + 87

128λ
3 − 21

256λ
4 = 333.919

λ5 = − 45
2 λ−

75
2 λ

2 − 1305
128 λ

3 + 315
256λ

4 = −1979.913

Using these results we give the first five terms in the series in eccentricity
e for the lowest eigenvalue λ (ε)

λ (ε) = λ+− 1
2 λ ε

2 +
(
− 3

16 λ+ 1
32 λ

2
)
ε4 +

(
− 3

32 λ+ 1
64 λ

2
)
ε6

+
(
− 7

128 λ+ 3
512 λ

2 + 29
16384 λ

3 − 7
32768 λ

4
)
ε8

+
(
− 9

256 λ+ 1
1024 λ

2 + 87
32768 λ

3 − 21
65536 λ

4
)
ε10

(12)
Previously this series was only correctly established up to the second

order. The seminal work [4] gives a third order expression but this term is
incorrect.

CONCLUSIONS
Our work has accomplished two goals.

1. We have shown that simple exact variations to the Laplace-Dirichlet
Eigenvalue problem exist and can be determined. This alone is signif-
icant for researchers in the CMS.

2. We have shown that the CMS can be automated. This automation can
be used to solve problems beyond the scope of hand calculations.
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