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ObjectiveObjective
No programs are currently available to symbolically solve problems in the Cal-
culus of Moving Surfaces (CMS). Many research fields take advantage of the 
CMS and would benefit from a symbolic system. We are developing a system 
to fill this gap and help advance ongoing research in the CMS.

The goals of the system are: 
 - Simplify complex expressions.
 - Take derivatives and integrals.
 - Combine like terms.
 - Support very long and complex symbolic expressions.
 - Convert expressions for use in other packages (Mathematica, Maple).
 - Support all the rules of the CMS.
 - Allow users to create their own rules.

The Calculus of Moving Surfaces is an extension of Tensor Calculus on stationary 
surfaces to moving surfaces.
The CMS provides analytic tools for finding solutions to a wide range of problems 
with moving surfaces such as 
 - Fluid Film Dynamics
 - Boundary Variation Problems
 - Shape Optimization Problems

A symbolic system will provide advantages over existing methods. As with any ana-
lytic framework, the complexity of calculations grows rapidly with the order of ap-
proximation. This means that hand calculations quickly become error prone or in-
tractable. Automated symbolic computations will not make errors or become hin-
dered by complex calculations. Symbolic Computation also offers advantages over 
numerical methods, particularly when the boundary perturbation is too complex to 
be captured effectively and when the perturbation leads to singularities. 

Researchers working in fields related to the CMS will be able to spend more time in-
vestigating ideas and less effort performing tedious calculations. Formally intrac-
table problems will become solvable, allowing advances in research. The primary 
goal of this system is to provide a tool that can advance the work of numerous other 
members of the research community.

Motivation

Method
We have built a prototype system to solve a selection of problems in the CMS 
that are currently relevant to researchers. New rules and objects are added to 
expand the types of problems the system can handle. Known solutions are 
compared to the systems output to determine if calculations are being handled 
correctly.

The over arching strategy of the system is to:
 - Create an tree structure representing each expression. 
 - Walk the tree to find subtrees that match known rules in the CMS.
 - Replace the subtrees with a new version representing the applied rule.
 - Find equivalent subtrees to combine and cancel terms.
 - Apply Rules towards a canonical form.
 - Export the final expression in symbolic or Mathematica form.

The prototype system has been used to accurately solve a number of known 
problems. It has also been used to support ongoing research in the CMS. The 
system has been able to output the final results as Mathematica code allowing 
for numerical calculations. 
The growth rate for many expressions has increased the number of terms to a 
size that overwhelms the system. Finding methods to better handle very large 
expressions will be a key factor moving forward. 
Determining if expressions are equivalent is possible but currently takes facto-
rial time. Finding more efficient methods for equivalence testing will improve 
system performance.
Overall, the system has shown significant promise and solved and number of 
significant model problems. Ongoing development will lead to a system that 
will simplify the research in the CMS.

When a subtree that matches a rule is found, the existing subtree is pruned and 
a new subtree is created applying the rule. 
The figure shows the tree manipulation required to apply one rule for the invari-
ant time derivative to the curvature tensor. 

 These operations can all be applied automatically improving the speed and reli-
ability of calculations.  Some elements of the rule are variable, in this case the in-
dexes alpha and beta can have any names as long as they have the correct prop-
erties and positions.
Many rules increase the total size of the expression. This creates long and com-
plex expressions when working symbolically.
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The initial formula for higher order variations can be described by known formulas. 
Converting these into simplified form is performed automatically by the system.

Allowing the program to automatically simply the expression results in the following 
expanded formula.

This expansion shows the number of terms is already increasing rapidly. The third 
variation can also be simplified in a similar manner.

The third variation clearly makes the case for an automated approach to the symbolic 
computation. In this case, the third order has already become cumbersome to calculate 
by hand. Even higher orders, like the fifth and sixth can be calculated automatically by 
our prototype. Each of these results was converted to a general equation in polar coordi-
nates to automatically compare the results to the known solutions. This model provides 
one of the many problems the system has already shown success on. The problem is 
also relevant to researchers in the field of CMS, giving a glimpse of the systems future 
potential. 

The system has been shown to successfully solve a subset of problems in the CMS. 
Problems were selected that have known solutions and the calculations of the system 
were compared to the results. The output was also converted into Mathematica code 
for numerical comparisons. Problems were selected that could be solved using the 
subset of rules currently implemented in the prototype system.

One model problem that was successfully solved by the system involved Poisson’s 
equation. We examined Poisson’s problem with        _______ on a regular polygon with 
N sides. This problem uses many of the implemented rules.

The first variation of the model problem is determined by hand calculations. This gives 
the system a starting point to determine the higher variations.  
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The two products are equal, which means they can be combined to simplify the 
expression.
Why are these two products equal?

Multiplication is commutative allowing 
term reordering.

Contracted (paired) indexes can be renamed.
i=a,j=b, k=c

Contracted Indexes can be juggled.
Flip the positions of the two b and c indexes. 
Possible positions are upper and lower.
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