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ObjectiveObjective
Many systems exist that allow symbolic expressions to be simplified or solved. 
Programs like Maple and Mathematica as well as some graphic calculators can 
handle expressions symbolically. These systems allow users to solve problems 
without tedious hand calculations. For example, users can quickly determine 
a symbolic derivative.

The Calculus of Moving Surfaces (CMS) is an extension of Tensor Calculus on 
stationary surfaces to moving surfaces. In these systems, forces exist on the 
surface, which is also moving or changing shape.
 
No programs are currently available to symbolically solve problems in the Cal-
culus of Moving Surfaces. Many research fields take advantage of the CMS 
and would benefit from a symbolic system. Our research is in the development 
of a system to fill this gap and help advance ongoing research in the CMS.

The CMS provides analytic tools for finding solutions to a wide range of problems 
with moving surfaces such as Fluid Film Dynamics, Boundary Variation Problems, 
and Shape Optimization Problems.

To determine the viability of the project, we selected a subset of problems that can 
be solved in a similar way. This limited the number of rules and objects that needed 
to be implemented, while still allow reasonable problems to be solved. These prob-
lems are related to boundary variations and similar to ongoing research in the CMS.

A model problem considers Poisson’s equation on an N-sided polygon. The bound-
ary variation condition is introduced by changing from a circle to a polygon with N 
sides. The CMS then allows for the determination of elements in the series for the 
Poisson energy EN and formulas for variations of arbitrary order ui. Solutions to this 
problem are know, allowing our results to be tested. The problem uses all the rules 
needed for similar problems that are of current interest. This will allow the system 
to be used on these problems when it can accurately solve the model problem.

A symbolic system will solve problems with existing methods and improve research 
into the CMS. As with any analytic framework, the complexity of calculations grows 
rapidly with the order of approximation. This means that hand calculations quickly 
become error prone or intractable. Automated symbolic computations will not make 
errors or become hindered by complex calculations. Symbolic Computation also 
offers advantages over numerical methods, particularly when the boundary pertur-
bation is too complex to be captured effectively and when the perturbation leads to 
singularities.

Motivation

Method
We have built a prototype system to solve a subset of CMS problems. The 
System can be expanded to handle new rules and objects. Known solutions 
are compared to the output to determine if calculations are being handled cor-
rectly.

The overarching strategy of the system is to:
 - Create a tree structure representing each expression. 
 - Walk the tree to find subtrees that match known rules in the CMS.
 - Replace the subtrees with a new version representing the applied rule.
 - Find equivalent subtrees to combine or cancel terms.
 - Apply Rules towards a normal form.
 - Export the final expression in symbolic or Mathematica form.

The prototype system has been used to accurately solve a number of known 
problems. It has also been used to support ongoing research in the CMS. The 
system has been able to output the final results as Mathematica code allowing 
for numerical calculations. 
The growth rate for many expressions has increased the number of terms to a 
size that overwhelms the system. Finding methods to better handle very large 
expressions will be a key factor moving forward. 
Determining if expressions are equivalent is possible but currently takes facto-
rial time. Finding more efficient methods for equivalence testing will improve 
system performance.
Overall, the system has shown significant promise and solved and number of 
significant model problems. Ongoing development will lead to a system that 
will simplify the research in the CMS.

When a subtree that matches a rule is found, the existing subtree is pruned and 
a new subtree is created after applying the rule. 
The figure shows the tree manipulation required to apply one rule for the invari-
ant time derivative to the curvature tensor. 

These operations can all be applied automatically improving the speed and reli-
ability of calculations.  Some elements of the rule are variable, in this case the in-
dexes alpha and beta can have any names as long as they have the correct prop-
erties and positions.
Many rules increase the total size of the expression. This creates long and com-
plex expressions when working symbolically.
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The initial formula for higher order variations can be described by known formulas. 
Converting these into simplified form is performed automatically by the system.

Allowing the program to automatically simply the expression results in the following 
expanded formula.

This expansion shows the number of terms is already increasing rapidly. The third 
variation can also be simplified in a similar manner.

The third variation clearly makes the case for an automated approach to the symbolic 
computation. In this case, the third order has already become cumbersome to calculate 
by hand. Even higher orders, like the fifth and sixth can be calculated automatically by 
our prototype. Each of these results was converted to a general equation in polar coordi-
nates to automatically compare the results to the known solutions. This model provides 
one of the many problems the system has already shown success on. The problem is 
also relevant to researchers in the field of CMS, giving a glimpse of the systems future 
potential. 

The system has been shown to successfully solve a subset of problems in the CMS. 
Problems were selected that have known solutions and the calculations of the system 
were compared to the results. The output was also converted into Mathematica code 
for numerical comparisons. Problems were selected that could be solved using the 
subset of rules currently implemented in the prototype system.

One model problem that was successfully solved by the system involved Poisson’s 
equation. We examined Poisson’s problem with        _______ on a regular polygon with 
N sides. This problem uses all of the system’s currently implemented rules.

The first variation of the model problem is determined by hand calculations. This gives 
the system a starting point to determine the higher variations.  
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The two products are equal, which means they can be combined to simplify the 
expression.
Why are these two products equal?

Multiplication is commutative allowing 
term reordering.

Contracted (paired) indexes can be renamed.
i=a,j=b, k=c

Contracted Indexes can be juggled.
Flip the positions of the two b and c indexes. 
Possible positions are upper and lower.
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