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Abstract

The calculus of moving surfaces (CMS) provides analytic tools for finding solutions to a
wide range of problems with moving surfaces including fluid film dynamics, boundary variation
problems, and shape optimization problems. The CMS is an extension of tensor calculus on
stationary surfaces to moving surfaces. As with any analytic framework, the complexity of
calculations grows rapidly with the order of approximation. This quickly causes problems to
become complex enough that hand calculations become error prone or intractable. A symbolic
computation system will alleviate these problems, allowing researchers to examine problems
that have not been previously solvable. No symbolic calculus system is currently available
that supports the CMS. We have developed a prototype symbolic computation system that
can solve boundary variation problems with the help of the CMS. Our system has been used
to solve a series of model problems of interest to applied mathematicians.

The motivation is a boundary problem proposed by Grinfeld and Strang [2] in 2004. What
is the series in 1/N for the simple Laplace eigenvalues λN on a regular polygon with N sides?
In [2], the idea of expressing λN,n as a series in 1/N was put forth and in [3] the first several
terms were computed using the calculus of moving surfaces. The prototype implementation
was successfully used to find an error in the fourth term in the series expansion in [3] which
was previously computed by hand. The CMS approach to this problem is essentially the same
as for Poisson’s equation on polygons, which is used as the model problem in [1]. This problem
involves Poisson’s equation ∇i∇iu = 1 and is therefore simpler than the eigenvalue equation
∇i∇iu = −λu that is at the heart of the model problem. The fundamental simplification is
unrelated to the CMS: it comes from the fact that all solution variations un (where n is the
order of the variation) satisfy Laplace’s equation in the interior. This makes it easy to solve
for un and use the result in the next order of variation.

The expression for E1 and the equation for u1 are obtained analytically. Higher order
variations follow by direct application of the rules of CMS. The second order variation u2 is
governed by the boundary value system
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∇i∇iu2 = 0 (1)

u2|S = −2CN i∇iu1 −
δC

δt
N i∇iu+ CZiα∇αC∇iu− C2N iN j∇i∇ju (2)

The second order energy variation E2 is given by

E2 = −1

2

∫
S

(
−δC
δτ
∇iu∇iu− 2C∇iu1∇iu− 2C2N i∇i∇ju∇ju+ C2Bα

α∇iu∇iu
)
dS (3)

and third energy variation E3 is given by

E3 =
1
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−2C∇iu1∇iu1 − C2N j∇iu1∇j∇iu

−C2N j∇iu∇j∇iu1
−2 δCδt ∇iu1∇

iu− C2N j∇iu1∇j∇iu
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αN
k∇iu∇k∇iu

−3C δC
δt N

i∇ju∇i∇ju+ C2∇αCZjα∇iu∇i∇ju
−C2N j∇j∇iu∇iu1 − C3N iN j∇i∇ku∇j∇ku
−C2Nk∇i∇ju1∇iu− 2C3N jNk∇k∇i∇ju∇iu
−2C δC
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j∇iu∇j∇iu+ C2∇iu∇j∇iuZjα∇αC

−C2N j∇iu1∇j∇iu− C3N jNk∇j∇iu∇k∇iu
− δC

δt CN
m∇m∇iu∇iu− C2N j∇j∇iu1∇iu



. (4)

Equation (4), like no other, makes the case for the symbolic calculus of moving surfaces. While
each element can be evaluated in straightforward fashion, the sheer number of these elements
is overwhelming.

Our prototype system has been able to calculate solutions up to the fifth order variation
automatically. These problems have already shown that the system can evaluate high order
boundary variations for complex surface motions.
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