
Introduction to Term Rewrite Systems and their
Applications

Mark Boady

Drexel University

May 17, 2015

Mark Boady Introduction to Term Rewrite Systems and their Applications

Motivation

Mark Boady Introduction to Term Rewrite Systems and their Applications

Overview

What is a Term Rewrite System (TRS)?

Tic-Tac-Toe

The Maude System

Cryptography

Important Properties

Confluence
Termination

Knuth-Bendix

TRS are Turing Complete

Example: Taking a Derivative

Applications

Mark Boady Introduction to Term Rewrite Systems and their Applications

What is a TRS?

A TRS is a pair T = (⌃,R)

The Signature, ⌃, is a set of function symbols and their arity

Function Symbols have fixed arity
Arity means number of inputs
Constants are functions that take 0 inputs

The Reduction Rules, R, is a collection of rules

l ! r

Match on pattern l and replace with pattern r

Patterns are made from ⌃ [V where V is a set of variables

Mark Boady Introduction to Term Rewrite Systems and their Applications

Board Games

Toss

http://toss.sourceforge.net
Model Games using TRS

Mark Boady Introduction to Term Rewrite Systems and their Applications

Tic-Tac-Toe

A Tic-Tac-Toe board has 9 spaces

Each can be blank or have a symbol (X or O)

The board is a term

board(,X,O, ,X, , ,O,)

Mark Boady Introduction to Term Rewrite Systems and their Applications

Tic-Tac-Toe

Each move is a rewrite

If multiple rules can match one pattern

Give probability to each rule
Select best move (guess if equal probabilities)

board(,X,O, ,X, , ,O,) ! board(,X,O, ,X, , ,O,X)

Mark Boady Introduction to Term Rewrite Systems and their Applications

Tic-Tac-Toe

The double-arrow ⇣ shows multiple rewrites (moves) have
taken place

The final board is in normal form

Normal Form: A term for which no rewrite rules match

board(,X,O, ,X, , ,O,) ⇣ board(O,X,O,X,X,O,X,O,X)

Mark Boady Introduction to Term Rewrite Systems and their Applications

Example: Addition

A simple TRS that can add numbers

Positive Integers only

Signature

0 - constant Arity 0
S() - Arity 1 Successor Function
add(,) - Arity 2

Rules

add(0, a) ! a

add(S(a),b)!add(a,S(b))

Mark Boady Introduction to Term Rewrite Systems and their Applications

Example: 3+2=5

R = {p1 : add(0, a) ! a, p2 : add(S(a),b)!add(a,S(b))}
Reduction

add(S(S(S(0))), S(S(0))) !
p2

add(S(S(0)), S(S(S(0))))

add (S(S(0)), S(S(S(0)))) !
p2

add (S(0), S(S(S(S(0)))))

add (S(0), S(S(S(S(0))))) !
p2

add(0, S(S(S(S(S(0)))))

add(0, S(S(S(S(S(0))))) !
p1

S(S(S(S(S(0))))

The TRS stops at S(S(S(S(S(0))))

Final term is in normal form

Mark Boady Introduction to Term Rewrite Systems and their Applications

Maude

Rewriting a more complex term will have many steps.

Multiply and Add!
mult(S(S(S(S(0)))),S(S(0)))

We want to automate this process.

The Maude System is a language for term rewriting.

Freely Available: http://maude.cs.illinois.edu/w/index.php

Or google“Maude System”

Mark Boady Introduction to Term Rewrite Systems and their Applications

Add/Mult in Maude

mod INTEGERS is

sort Int .

op 0 : -> Int .

op S_ : Int -> Int .

op add(_,_) : Int Int -> Int .

op mult(_,_) : Int Int -> Int .

vars a b : Int .

rl add(0,a) => a .

rl add(S(a),b) => add(a,S(b)) .

rl mult(0,a) => 0 .

rl mult(S(a),b) => add(mult(a,b),b).

endm

Saved as integers.fm

Mark Boady Introduction to Term Rewrite Systems and their Applications

Add/Mult in Maude

Mark Boady Introduction to Term Rewrite Systems and their Applications

Add/Mult in Maude

Mark Boady Introduction to Term Rewrite Systems and their Applications

Cryptography

NQ Vault is a popular encryption app for Andriod and iOS

Video and Image files were encrypted by

Static 8-bit key is selected for all files
XOR first 128 bytes of file with key

This is trivial to decrypt

There are only 255 possible keys to try

It is important to prove how well your ecryption method works

Mark Boady Introduction to Term Rewrite Systems and their Applications

Cryptography

Reachability Analysis

Given two terms, is it possible to get from one to the other

Timbuk

http://www.irisa.fr/celtique/genet/timbuk/

Lande Project

Proving properties of cryptography systems
Can a potential intruder get secret information?
http://www.irisa.fr/celtique/genet/crypto.html

RAVAJ

Security testing for Java bytecode
http://www.irisa.fr/lande/genet/RAVAJ

Mark Boady Introduction to Term Rewrite Systems and their Applications

Reachability

An encryption method is defined by an equational system

Is there a way to use the equations to get some one term to
another?

path between a(b + c) and ab + ac

Universal Word Problem

Given two terms s, t and a set of equations E can we make
s = t?

Knuth-Bendix Algorithm

Mark Boady Introduction to Term Rewrite Systems and their Applications

Knuth-Bendix

Possible Solution:

1 Make E into a TRS
2 rewrite s ⇣ s

0 to normal form
3 rewrite t ⇣ t

0 to normal form
4 If s 0 and t

0 are exactly the same then s = t

Mark Boady Introduction to Term Rewrite Systems and their Applications

Knuth-Bendix

XOR:

A� 0 =A

A� A =0

(A� B)� C =A� (B � C)

If an attacker has the encrypted message E = M � K can
they recover M

If E=M under equational rules

In this case, as long as the attacker can guess K

Mark Boady Introduction to Term Rewrite Systems and their Applications

Knuth-Bendix

A TRS with two properties can answer this question

Confluence

If mutiple rules match a term, which is picked does not change
outcome
One input would have 2 or more possible outputs without this

Termination

For any input term, the TRS will terminate at a normal form

If both these properties hold, then

a ⇣
E

a

0

b ⇣
E

b

0

if a0 ⌘ b

0 then a = b under equational system E

Mark Boady Introduction to Term Rewrite Systems and their Applications

Knuth-Bendix

Knuth-Bendix Completion is an algorithm to answer the
Universal World Problem

Inputs: ⌃ and E where E is an equational System and sorting

Outputs:

T = (⌃,R) where T is confluent and terminating
or Failure if termination is impossible
or Loops infinitely

Mark Boady Introduction to Term Rewrite Systems and their Applications

Algorithm

We start with a set of equations

A� A =0

A� 0 =A

(A� B)� C =A� (B � C)

Select one equation from the set (A� A = 0)

Decide which direction to place arrow

A� A ! 0
0 ! A� A

Mark Boady Introduction to Term Rewrite Systems and their Applications

Termination

We want to place the arrow so that TRS always terminates

Introduce a sorting on terms, with minimal element

if l ! r means l > r in the sorting, then it will terminate

If every reduction moves the term closer to the minimal
element, then it must terminate

We will pick

A� A ! 0

A constant will be the minimal element

Mark Boady Introduction to Term Rewrite Systems and their Applications

Confluence

We also need a confluent system so we can compare the
results

Assume the second rule we pick is

(A� B)� C ! A� (B � C)

This overlaps with A� A ! 0 to make

(A� A)� C

What happens if we try to rewrite this?

Mark Boady Introduction to Term Rewrite Systems and their Applications

Confluence

Path 1

(A� A)� C !0� C

Path 2

(A� A)� C !A� (A� C)

These aren’t equivalent, so we need to add an equation

0� C =A� (A� C)

Through repeated applications of this method, the system will
learn

A� (A� C) !C

Mark Boady Introduction to Term Rewrite Systems and their Applications

Knuth-Bendix

Knuth Bendix Algorithm Overview

Inputs: Equations E , Signature ⌃, sorting

Steps:

1 Pick an Equation a = b from E

1

if a ⌘ b discard

2

otherwise orient using sorting to l ! r
3

Fail if can’t be ordered

2 Add any pattern overlaps back into E as equations
3 Repeat until E = ;

If this algorithm succeeds, then it generates a TRS that is
confluent and terminating.

Mark Boady Introduction to Term Rewrite Systems and their Applications

Turing Complete

Turing machines are simple machines that can simulate any
real-world computer

A system is Turing complete if it can simulate a Turing
Machine

C++, Java, and Haskell are all Turing Equivalent

Any program written for one of these languages can also be
written in any other

In Short: A Turing complete system can do anything you
expect from a real-world computer

Mark Boady Introduction to Term Rewrite Systems and their Applications

Turing Machine

Turing machines are simple machines that can simulate any
real-world computer

A Turing Machine has:

A tape of infinite length
A set of characters ⌃ that can be written/read from the tape
A set of states Q the machine can be in
An input value written on the tape

Mark Boady Introduction to Term Rewrite Systems and their Applications

Lego Turing Machine

http://www.legoturingmachine.org

Mark Boady Introduction to Term Rewrite Systems and their Applications

Turing as TRS

We want to simulate a Turing machine as a TRS

Each tape symbol is a function of one input.

Special functions L and R for infinite blank space

Each state is a 1 input function

Example:

if a tape looks like · · · 0110 · · · and is it state q

0

reading first 1
term looks like L(0(q

0

(1(1(0(R))))))

Mark Boady Introduction to Term Rewrite Systems and their Applications

Turing as TRS

Each Transition is a reduction rule

Example:

In state q

2

if you read a 1 write 0 and move right and go to q

3

A(q
2

(1(B))) ! A(0(q
3

(B)))

Special rules for Spaces

q

1

(R) ! q

1

((R))

We can simulate any Turing Machine as a TRS

TRS are Turing Complete

Mark Boady Introduction to Term Rewrite Systems and their Applications

Example: Taking a Derivative

Simplification: Assume only di↵erential variable is x

⌃ =
�

d

dx

, () , , + , x , · · ·

V = {C :: integer ,A,B}
Derivative Rules:

d

dx

C !0

d

dx

x !1

d

dx

(A)B !B

dA

dx

(A)B�1

d

dx

(A+ B) !dA

dx

+
dB

dx

d

dx

(AB) !B

dA

dx

+ A

dB

dx

Mark Boady Introduction to Term Rewrite Systems and their Applications

Example: Taking a Derivative

d(2x2 + 7x + 25)�1

dx

!� 1

✓
d

dx

(2x2 + 7x + 25)

◆
(2x2 + 7x + 25)�2

⇣� d

dx

(2x2)� d

dx

(7x)� d

dx

(25)

(2x2 + 7x + 25)2

⇣�2 d

dx

x

2 � x

2

d

dx

2� x

d

dx

7� 7 d

dx

x � d

dx

25

(2x2 + 7x + 25)2

⇣ �2 d

dx

x

2 � 7 d

dx

x

(2x2 + 7x + 25)2

⇣ �4x d

dx

x � 7 d

dx

x

(2x2 + 7x + 25)2

⇣ �4x � 7

(2x2 + 7x + 25)2

Mark Boady Introduction to Term Rewrite Systems and their Applications

Application: Symbolic Computation

Mathematic/Wolfram Alpha

http://www.wolfram.com/mathematica/

Maple Computer Algebra System

http://www.maplesoft.com

Both Maple and Mathematic allow you to create your own
TRS
Matlab

http://www.mathworks.com

SymPy - Symbolic Computation Library for Python

http://www.sympy.org

Mark Boady Introduction to Term Rewrite Systems and their Applications

Programming Languages

The Maude System allows for the creation of TRS

Even allows for object oriented systems

PURE programming language based on TRS

http://purelang.bitbucket.org
Dynamically Typed

> f + g = \x -> f x + g x

if nargs f > 0 && nargs g > 0;

> f - g = \x -> f x - g x

if nargs f > 0 && nargs g > 0;

> f x = 2*x+1; g x = x*x; h x = 3;

> map (f+g-h) (1..10);

[1,6,13,22,33,46,61,78,97,118]

Mark Boady Introduction to Term Rewrite Systems and their Applications

Compiling

We can think of the translation before a programming
language and it’s compiled code as a series of rewrites

Mark Boady Introduction to Term Rewrite Systems and their Applications

KITTeL Termination Analysis

Available from: https://github.com/s-falke/kittel-koat

Termination Analysis of C Programs Using Compiler
Intermediate Languages. RTA 2011

Termination Analysis of Imperative Programs Using Bitvector
Arithmetic. VSTTE 2012

Alternating Runtime and Size Complexity Analysis of Integer
Programs. TACAS 2014

Mark Boady Introduction to Term Rewrite Systems and their Applications

C�ash Circuit Design

Available from: http://www.clash-lang.org

Generates VHDL (Hardware Description) from Haskell
Functional Programming

Using Rewriting to Synthesize Functional Languages to Digital
Circuits. Trends in Functional Programming (TFP) May 2013

Digital Circuits in ClaSH: Functional Specifications and
Type-Directed Synthesis. PhD thesis, University of Twente,
Enschede, The Netherlands, January 2015.

N Queens on an FPGA: Mathematics, Programming, or
Both?. In: Communicating Processes Architectures 2014

Mark Boady Introduction to Term Rewrite Systems and their Applications

C�ash Circuit Design

Mark Boady Introduction to Term Rewrite Systems and their Applications

Biological Modeling

Stochastic Multilevel Multiset Rewriting

Proceedings of the 9th International Conference on
Computational Methods in Systems Biology (CMSB ’11)
Mathematical Structures in Computer Science. 2013

Model of Bacterium searching for food source
Optimal Food source along line at 5
Bacterium can spin or move forward

Mark Boady Introduction to Term Rewrite Systems and their Applications

Formal Proofs

The ACL2 Sedan Theorem Prover

http://acl2s.ccs.neu.edu/acl2s/doc/

Example from
http://www.ccs.neu.edu/home/riccardo/courses/csu290-
sp09/lect22-acl2.pdf

Uses Simplification and Induction to prove theories about code

Simplification done using rewriting

Mark Boady Introduction to Term Rewrite Systems and their Applications

Proof by Induction

ACL2 > (defun rev (x)

(if (endp x)

NIL

(app (rev (cdr x)) (list (car x)))))

· · ·
ACL2 > (defthm true-listp-rev

(true-listp (rev x)))

· · ·
But simplification reduces this to T, us-

ing the :definition REV and the :executable-

counterpart of TRUE-LISTP.

That completes the proof of *1.

Q.E.D.

Mark Boady Introduction to Term Rewrite Systems and their Applications

Conclusions

Term Rewriting Systems provide a very simple model of
computation

A TRS is composed of

Signature: how terms can be written
Rewrite Rules: how terms can be transformed

Important Properties

Confuence
Termination

Knuth-Bendix - Makes a TRS from an Equational System

TRS are Turing Complete

This model has a wide variety of applications

Mark Boady Introduction to Term Rewrite Systems and their Applications

Thank You

Thank You.

Questions?

Mark Boady Introduction to Term Rewrite Systems and their Applications

