
Intro to Quantum Algorithms

Mark Boady

Department of Computer Science
Drexel University

May 5, 2021

Mark Boady Intro to Quantum Algorithms 1 / 50

Quantum Computers

https://www.reddit.com/r/QuantumComputing/comments/glenar/comic_dead_or_9_lives/

Mark Boady Intro to Quantum Algorithms 2 / 50

https://www.reddit.com/r/QuantumComputing/comments/glenar/comic_dead_or_9_lives/

Quantum Computers in the News

Is Quantum Computing Placing Bitcoin’s Future in Jeopardy?
(May 1, 2021 The Daily Hodl)
A student’s physics project could make quantum computers
twice as reliable (April 12, 2021 Live Science)
Cryptographers are Racing Against Quantum Computers
(April 20, 2021 builtin)
IBM promises 1000-qubit quantum computer - a milestone -
by 2023 (Sept 15, 2020 Science Mag)

Mark Boady Intro to Quantum Algorithms 3 / 50

Quantum Computers

The future is bright
There are a lot of hardware limitations right now
In the News: Factoring Large integers will destroy
cryptography as we know it
In Reality: Python can probably still do better right now

Mark Boady Intro to Quantum Algorithms 4 / 50

Shor’s Algorithm

The most famous quantum algorithm.
Can factor integers!
Largest Number Ever Factored: 21 in 2012
Martin-Lopez, Enrique; MartÃn-Lopez, Enrique; Laing, Anthony; Lawson, Thomas; Alvarez, Roberto;

Zhou, Xiao-Qi; O’Brien, Jeremy L. (12 October 2012). “Experimental realization of Shor’s quantum

factoring algorithm using qubit recycling”. Nature Photonics. 6 (11): 773-776.

A failed attempt was made to factor 35 in 2019
Amico, Mirko; Saleem, Zain H.; Kumph, Muir (2019-07-08). ”An Experimental Study of Shor’s Factoring

Algorithm on IBM Q”. Physical Review A. 100 (1): 012305.

Mark Boady Intro to Quantum Algorithms 5 / 50

Quantum Annealing

Uses special hardware (not universal computation)
Shown to factor: 15, 143, 59989, and 376289
Jiang, S., Britt, K.A., McCaskey, A.J. et al. Quantum Annealing for Prime Factorization. Sci Rep 8, 17667

(2018). https://doi.org/10.1038/s41598-018-36058-z

Hardware designed for optimization problems limits uses

Mark Boady Intro to Quantum Algorithms 6 / 50

Classical Computers

It probably isn’t worth your effort to factor 21, 35, or even
376289 on a quantum computer.

Mark Boady Intro to Quantum Algorithms 7 / 50

Where we stand now

We can analyze and test algorithm at small scales.
We know they work.
We know they have amazing potential.
Significant Hardware and Software limitations right now.
We are in the 1950s of Quantum Computing.
Learn the basics now to be prepared for the near future.
We are advancing much faster this time around!

Mark Boady Intro to Quantum Algorithms 8 / 50

Today’s Goals

What is a Quantum Computer?
How is it different from a Classical Computer?
How do we to write simple programs?
How does the Deutsch-Jozsa Algorithm work?

Mark Boady Intro to Quantum Algorithms 9 / 50

Bits

Classical Computing is built on the Bit.
0 (Low Voltage 0-2 Volts)
1 (High Voltage 3-5 Volts)
Bits and Circuits are governed by Classical Physics.
These values are discrete.

El pak at English Wikipedia https://commons.wikimedia.org/wiki/File:Original_message.jpg

Mark Boady Intro to Quantum Algorithms 10 / 50

https://commons.wikimedia.org/wiki/File:Original_message.jpg

Logic Circuits

We apply logic gates to bits to create circuits.
A logic gate takes input bits and produces and output bit.

https://commons.wikimedia.org/wiki/File:Full-adder_logic_diagram.svg

Mark Boady Intro to Quantum Algorithms 11 / 50

https://commons.wikimedia.org/wiki/File:Full-adder_logic_diagram.svg

Quantum Computing

The Qubit is the quantum equivalent of a bit
Bit becomes Qubit
Logic becomes Linear Algebra
Classical Physics becomes Quantum Physics
Writing Quantum Algorithms requires a completely different
perspective than Classical Algorithms

Mark Boady Intro to Quantum Algorithms 12 / 50

Qubit

When measured a qubit can have one of two values
|0〉 the quantum False or 0 state
|1〉 the quantum True or 1 state

This is called Dirac Notation.
During computation a qubit can be in superposition

|ψ〉 = α |0〉+ β |1〉

A superposition is a linear combination of states.

Mark Boady Intro to Quantum Algorithms 13 / 50

Bloch Sphere

Imagine a Qubit is a ball.
We can point to any position on the ball.
When we measure the location we get either 0 or 1.
The top of the sphere always measures 0.
The bottom of the sphere always measures 1.
Every other location has some probability of 0 and some
probability of 1.

Mark Boady Intro to Quantum Algorithms 14 / 50

Bloch Sphere

Smite-Meister https://commons.wikimedia.org/wiki/File:Bloch_sphere.svg

Mark Boady Intro to Quantum Algorithms 15 / 50

 https://commons.wikimedia.org/wiki/File:Bloch_sphere.svg

Qubit

A qubit is a linear combination of states.

|ψ〉 = α |0〉+ β |1〉

α and β are complex numbers
When the qubit is measured it will be either 0 or 1
We can guess the probabilities by repeated experiments
α and β determine the exact point on the sphere
The probability of measuring 0 is |α|2

The probability of measuring 1 is |β|2

Since both are probabilities then

|α|2 + |β|2 = 1

Mark Boady Intro to Quantum Algorithms 16 / 50

Superposition

A qubit has a continuum of states be |0〉 and |1〉
We can pick out point on the sphere at a position that is
sometimes in the 1 side and sometimes in the 0 side.
When measured the qubit will either be in state 0 or 1
A qubit with a 50/50 split between 0 and 1

|+〉 = 1√
2
|0〉+ 1√

2
|1〉

|α|2 =
∣∣∣∣ 1√

2

∣∣∣∣2 = 1
2 = 50%

|β|2 =
∣∣∣∣ 1√

2

∣∣∣∣2 = 1
2 = 50%

Mark Boady Intro to Quantum Algorithms 17 / 50

Interference

Interference - probability waves can cancel out.

By Alexandre Gondran - Own work, CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php?curid=53628849

Mark Boady Intro to Quantum Algorithms 18 / 50

 https://commons.wikimedia.org/w/index.php?curid=53628849

Vector Representation

A quantum circuit is a vector

|ψ〉 = α |0〉+ β |1〉 =
[
α
β

]

A multiple qubit circuit is a larger vector.
A two-qubit system has a probability for each result

|ψ〉 =α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉

=

α00
α01
α10
α11

Mark Boady Intro to Quantum Algorithms 19 / 50

Qiskit

Qiskit is IBM’s Python 3 Library for programming quantum
computers
Allows for both simulation and execution on real hardware
First Install Anaconda
https://www.anaconda.com

Install Qiskit
https://qiskit.org/documentation/getting_started.html

Mark Boady Intro to Quantum Algorithms 20 / 50

https://www.anaconda.com
https://qiskit.org/documentation/getting_started.html

Libraries

We need to import the correct libraries
qiskit has the all the basics to make circuits
BasicAer has a simulator
You can simulator or connect to a real QC

code/circuit1.py
1 #Mark Boady − 2021
2 #I n t r o to Quantum Computers
3

4 #Import t he L i b r a r i e s
5 from q i s k i t i m p o r t ∗
6 #For s i m u l a t i o n s :
7 from q i s k i t i m p o r t B a s i c A e r

Mark Boady Intro to Quantum Algorithms 21 / 50

Circuit

We need to make a circuit.
First number is how many Qubits (3)
Second number is how many Classic Bits (3)
We need to measure into Classic Bits to see the results.

code/circuit1.py
10 #I want a c i r c u i t w i t h
11 #3 Q u b i t s and 3 c l a s s i c b i t s
12 qc = QuantumCircu i t (3 , 3)

Mark Boady Intro to Quantum Algorithms 22 / 50

Add X Gate

We add an X gate.
Similar to not
Flips the values of α and β
Flips the probabilities of 1 and 0 as outcomes

code/circuit1.py
14 #Add a g a t e
15 qc . x (0)

Mark Boady Intro to Quantum Algorithms 23 / 50

Measure the Results

We need to measure the results.
Measure a Qubit into a Classic bit.
The barrier is just for visuals, it makes the diagram easier to
read.

code/circuit1.py
17 #We need to measure to s e e the r e s u l t s
18 #B a r r i e r i s j u s t f o r v i s u a l
19 qc . b a r r i e r (r an ge (0 , 3))
20 qc . measure (0 , 0)
21 qc . measure (1 , 1)
22 qc . measure (2 , 2)

Mark Boady Intro to Quantum Algorithms 24 / 50

Draw the Circuit

We can ask qiskit to draw the circuit

code/circuit1.py
24 #P r i n t as t e x t
25 p r i n t (qc . draw (output=” t e x t ”))
26 #Latex f o r S l i d e s
27 p r i n t (qc . draw (output=” l a t e x s o u r c e ”))
28 #Matplot to make an image
29 qc . draw (output=” mpl ” , f i l e n a m e=” c i c u i t . png ”)

Mark Boady Intro to Quantum Algorithms 25 / 50

Circuit with X Gate

q0 : X
q1 :
q2 :
c : /3 0 1 2

Mark Boady Intro to Quantum Algorithms 26 / 50

Simulate

We simulate the circuit
Since results can be random, we run many tests.

code/circuit1.py
31 #Run our s i m u l a t i o n !
32 #C r e a t e S i m u l a t o r
33 backend s im = B a s i c A e r . g e t b a c k e n d (’

q a s m s i m u l a t o r ’)
34 #Run 2 ,048 t e s t s
35 j o b s i m = e x e c u t e (qc , backend s im , s h o t s =2048)
36 #Get the r e s u l t s
37 r e s u l t s i m = j o b s i m . r e s u l t ()
38 #Show t he count o f each outcome
39 c o u n t s = r e s u l t s i m . g e t c o u n t s ()
40 p r i n t (c o u n t s)

Mark Boady Intro to Quantum Algorithms 27 / 50

Results

The results are: {’001’: 2048}
q0 was a 1 on every single test measurement
q1 was a 0 on every single test measurement
q2 was a 0 on every single test measurement

Mark Boady Intro to Quantum Algorithms 28 / 50

The CNOT Gate

We need multiple bit gates to do anything useful.
The CNOT gate is a conditional gate on two bits.
If control qubit is one then apply X to target qubit
If q0 then apply X to q1

q0 : •
q1 :
c : /2

Mark Boady Intro to Quantum Algorithms 29 / 50

The CNOT Gate

Another way to example this gate uses the XOR
Exclusive Or: True when two inputs are different and False
otherwise.
q0 = q0

q1 = q0 ⊕ q1

code/cnot.py
10 #CNOT Example
11 qc = QuantumCircu i t (2 , 2)
12 #Add a g a t e
13 qc . cnot (0 , 1)

Mark Boady Intro to Quantum Algorithms 30 / 50

The Hadamard Gate

The Hadamard Gate puts a Qubit into superposition
It has a 50% chance of being 1 and a 50% chance of being 0

q0 : H •
q1 : X
c : /2 0 1

Mark Boady Intro to Quantum Algorithms 31 / 50

Superposition Qubit

We put q0 into 50/50 superposition
We start q1 as 1
We then apply the CNOT

code/hcnot.py
10 #CNOT Example
11 qc = QuantumCircu i t (2 , 2)
12 #Add a g a t e
13 qc . h (0)#S u p e r p o s i t i o n q0
14 qc . x (1)#S t a r t q1 as 1
15 qc . cnot (0 , 1)
16 #Measure R e s u l t s
17 qc . measure (0 , 0)
18 qc . measure (1 , 1)

Mark Boady Intro to Quantum Algorithms 32 / 50

Results

Results: {’10’: 1002, ’01’: 1046}
1002 tests caused

q0 was 0
q1 stayed 1

1046 tests caused
q0 flipped to 1
q1 was flipped to 0 by the CNOT

Mark Boady Intro to Quantum Algorithms 33 / 50

Example Circuit

Applying CNOT twice undoes the operation.
q0 and q1 stay the same.
q3 is the result of q0 ⊕ q1

q0 : H • •
q1 : H •
q2 :
c : /3 2 0 1

Mark Boady Intro to Quantum Algorithms 34 / 50

Results

We can imagine our results are a Truth Table
We made the Truth Table for XOR

q0 q1 q2 Count
0 0 0 525
1 0 1 516
0 1 1 480
1 1 0 527

Mark Boady Intro to Quantum Algorithms 35 / 50

Quantum Algorithms

How can we use this?
We need to create interference
We can only measure classic bits
Interference can effect the probabilities
We need to make interference cancel out wrong answers
We will be left with the right answer

Mark Boady Intro to Quantum Algorithms 36 / 50

Problem Statement

You are given a Boolean Function with n variables
You are promised one of the following:

The function is always True (Tautology)
The function is always False (Contradictory)
The function is split 50% False and 50% True

Problem: Which of the three options is the function?

Mark Boady Intro to Quantum Algorithms 37 / 50

Classical Solution

An n variable truth table has 2n rows
If we test 1 more than half we will know the answer.

1 All true must be Tautology
2 All false must be Contradictory
3 We got at 2 different answers, it must be 50/50 split

We must do 1
2 ∗ (2n) + 1 = 2n−1 + 1 tests.

You cannot do better on a classical computer.

Mark Boady Intro to Quantum Algorithms 38 / 50

Deutsch-Jozsa Algorithm

We can do better on a quantum computer
We make a circuit with n + 1 qubits.
We put the Boolean function on the first n qubits and the
answer on the last qubit.
XOR is a boolean function, we can use the example from
earlier!
We create interference on the qubits

Mark Boady Intro to Quantum Algorithms 39 / 50

Deutsch-Jozsa Algorithm

Step 1: Apply Hadamard’s gate to qubits representing the
function input

code/deutsch xor.py
6 #3−q u b i t s and 2 c l a s s i c
7 qc = QuantumCircu i t (3 , 2)
8

9 #B u i l d a C i r c u i t
10 #Step 1 : Apply H to th e i n p u t b i t s
11 qc . h (0)
12 qc . h (1)

Mark Boady Intro to Quantum Algorithms 40 / 50

Deutsch-Jozsa Algorithm

Step 2: Apply X then Hadamard’s gate to the qubit
representing the result

code/deutsch xor.py
13 #Step 2 : Apply X to t he r e s u l t b i t
14 #then a p p l y H
15 qc . x (2)
16 qc . h (2)

Mark Boady Intro to Quantum Algorithms 41 / 50

Deutsch-Jozsa Algorithm

Step 3: Implement the Boolean function

code/deutsch xor.py
18 #Step 3 : Implement Boolean F u n c t i o n
19 qc . b a r r i e r ()
20 qc . cnot (0 , 1)
21 qc . cnot (1 , 2)
22 qc . cnot (0 , 1)
23 qc . b a r r i e r ()

Mark Boady Intro to Quantum Algorithms 42 / 50

Deutsch-Jozsa Algorithm

Step 4: Apply H to input qubits (undo original H)

code/deutsch xor.py
25 #Step 4 : Apply H to a l l the i n p u t s
26 qc . h (0)
27 qc . h (1)

Mark Boady Intro to Quantum Algorithms 43 / 50

Deutsch-Jozsa Algorithm

Step 5: Measure the input bits

code/deutsch xor.py
28 #Step 5 : Measure i n p u t s
29 qc . measure (0 , 0)
30 qc . measure (1 , 1)

Mark Boady Intro to Quantum Algorithms 44 / 50

Deutsch-Jozsa Algorithm

Results: {’11’: 2048}

q0 : H • • H
q1 : H • H
q2 : X H
c : /2 0 1

Mark Boady Intro to Quantum Algorithms 45 / 50

Deutsch-Jozsa Algorithm

What if we take away the Boolean function?
Results: {’00’: 2048}

q0 : H H
q1 : H H
q2 : X H
c : /2 0 1

Mark Boady Intro to Quantum Algorithms 46 / 50

Results

If the Boolean function is a 50/50 split then the input bits
will all measure 1
If the Boolean function is constant then the input bits will all
measure 0
Interference cancels out all other outcomes
Once we know a function is constant, determining if it is a
Tautology or Contradictory is trivial

Mark Boady Intro to Quantum Algorithms 47 / 50

Why

What? Why? I’m confused?
To see why the probabilities cancel out, we would need to
examine the linear algebra
Above the scope of this talk.

Mark Boady Intro to Quantum Algorithms 48 / 50

Famous Algorithms

Grover’s algorithm
Given a Boolean function, find a way to make it true
Classic Solution is O(2n)
Grover is O(

√
2n)

Shor’s Algorithm
Given an integer, find a prime factor
Classical Solution is O

(
e1.9(log n)1/3(log log N)1/3

)
Shor is O

(
log N)2(log log N)(log log log N)

)

Mark Boady Intro to Quantum Algorithms 49 / 50

Where Do We Go From Here

Mark Boady mwb33@drexel.edu
Qiskit Tutorial:
https://qiskit.org/documentation/tutorials/
circuits/1_getting_started_with_qiskit.html

Qiskit Textbook:
https://qiskit.org/textbook/preface.html

Coding With Qiskit:
https://www.youtube.com/playlist?list=
PLOFEBzvs-Vvp2xg9-POLJhQwtVktlYGbY

Quantum Computation and Quantum Information by Michael
A. Nielsen and Isaac L. Chaung

Mark Boady Intro to Quantum Algorithms 50 / 50

https://qiskit.org/documentation/tutorials/circuits/1_getting_started_with_qiskit.html
https://qiskit.org/documentation/tutorials/circuits/1_getting_started_with_qiskit.html
https://qiskit.org/textbook/preface.html
https://www.youtube.com/playlist?list=PLOFEBzvs-Vvp2xg9-POLJhQwtVktlYGbY
https://www.youtube.com/playlist?list=PLOFEBzvs-Vvp2xg9-POLJhQwtVktlYGbY

